First page Back Continue Last page Overview Graphics
applications2
protein fold recognition
- Comparative modeling methods can consistently produce reliable structural models for protein sequences with more than 25% sequence identity to proteins with known structure. However, there is a good chance that also sequences with lower sequence identity have their structural components represented in structural databases. To this end, we present a novel fragment-based method using sets of structurally similar local fragments of proteins. The approach differs from other fragment-based methods that use only single backbone fragments. Instead, we use a library of groups containing sets of sequence fragments with geometrically similar local structures and extract sequence related properties to assign these specific geometrical conformations to target sequences. We test the ability of the approach to recognize correct SCOP folds for 273 sequences from the 49 most popular folds. 49% of these sequences have the correct fold as their top prediction, while 82% have the correct fold in one of the top five predictions. Moreover, the approach shows no performance reduction on a subset of sequence targets with less than 10% sequence identity to any protein used to build the library.
- (European Conference on Computational Biology)